|
技術文獻
基于改進粒子群小波神經網絡的瓦斯濃度預測研究發表時間:2022-05-03 17:02 煤礦開采已經成為我國經濟建設的重要產業,隨之而來的是煤礦開采過程中產生的瓦斯氣體所導致的危險事件。為了保障煤礦開采的安全以解決瓦斯氣體的爆炸,建立高效準確的瓦斯預測系統成為我國學術領域研究的重點。如對煤與瓦斯突出相關的5個特征進行分析,采用拉依達準則處理數據異常值并采用隨機森林、支持向量機和K近鄰模型進行煤與瓦斯突出預測,實驗表明:采用隨機森林數據插補方法并利用隨機森林模型完成的預測,在所有數據插補方法和預測模型組合中性能最優[1];針對現有煤與突出預測方法存在可視化程度低、突出預測準確性和實時性不高等問題,以新元煤礦為試驗礦井,構建了煤與瓦斯突出預測多元數據可視化系統,應用結果表明:該系統改變了新元煤礦突出預測指標單一、不連續的現狀,顯著提高了礦井煤與瓦斯突出預測準確性與實時性[2];針對煤礦瓦斯濃度的預測的問題,以亭南煤礦正常生產期間302工作面的監測數據為研究背景,采用深度學習技術LSTM建立瓦斯預測模型,研究與設計了基于LSTM的煤礦瓦斯預測預警系統,該系統實現了煤礦瓦斯預警系統,增強了煤礦瓦斯監控系統的預警能力,提高了煤炭企業安全生產管理水平[3]。本研究認為,其不僅需要構建預測系統,還需要保證其瓦斯預測的準確性。因此,基于小波神經網絡原理,提出一種粒子群優化小波神經網絡的瓦斯預測模型,以此提高瓦斯預測的精準率。 |